PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR EXAMINATIONS, JAN - 2023

FLUID MECHANICS

(CE Branch)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
1.	a)	Prove the relation between surface tension and pressure inside the pressure of the droplet of the liquid and hallow bubble of the liquid $. P=\frac{4 \sigma}{d}$ and $P=\underline{8 \sigma}$	[7M]	1	L3
	b)	Explain the procedure to measure the pressure at any two points or two pipes by using U-tube differential manometer with neat sketch.	[7M]	1	L2
OR					
2.	a)	Derive an expression for force exerted on submerged vertical plane surface by the static liquid and locate the position of centre of pressure.	[7M]	1	L3
	b)	Determine the total pressure and depth of center of pressure on a plane rectangular surface of 2.5 m wide and 4.5 m deep when its upper edge is horizontal and (i) coincides with water surface (ii) 1.5 m below the free surface of water.	[7M]	1	L4
UNIT-II					
3.	a)	Explain the fallowing terms briefly and give one example each (i). Steady flow (ii) unsteady flow (iii). uniform flow (iv). non-uniform flow (v). laminar flow (vi) turbulent flow	[7M]	2	L2
	b)	State and derive three dimensional (3D) continuity equation for incompressible fluid.	[7M]	2	L2
OR					
4.	a)	Derive Euler's equation of motion acting along a stream line. Obtain Bernoulli's equation by its integration. List all assumptions made.	[10M]	2	L3
	b)	The diameter of a pipe at the section 1-1 and 2-2 are 200 mm and 300 mm respectively. If the velocity of water flowing through the pipe at section 1-1 is $4 \mathrm{~m} / \mathrm{s}$, find (i). Discharge through the pipe and (ii). Velocity of water at section 2-2.	[4M]	2	L4
UNIT-III					
5.	a)	Draw a neat sketch of Reynolds apparatus and explain how the laminar flow can be demonstrated with the help of the apparatus.	[7M]	3	L3
	b)	Two parallel plates kept 100 mm apart have laminar flow of oil between them with a maximum velocity of $1.5 \mathrm{~m} / \mathrm{sec}$. Calculate discharge per meter width, shear stress at the plates and the difference in pressure between two points 20 m apart. Assume viscosity of oil to be 24.5 poise	[7M]	3	L4
OR					
6.	a)	Derive the expression for the loss of head in a pipe due to friction?	[7M]	3	L3
	b)	A crude oil of kinematics viscosity 0.4 stoke is flowing through a pipe of diameter 300 mm at the rate of $300 \mathrm{lit} / \mathrm{sec}$. Find the head lost due to friction for a length of 50 m of pipe	[7M]	3	L4

UNIT-IV

UNIT-IV					
7.	a)	Classify mouth pieces and orifices and also explain briefly with neat sketches.	[10M]	4	L2
	b)	What is pitot tube? How will you determine the velocity at any point with help of pitot tube.	[4M]	4	L2
OR					
8.	a)	Derive an expression for the discharge over a rectangular notch in terms of head of water over the crest of the notch.	[7M]	4	L3
	b)	Water flows through a triangular right angled notch first and over a rectangular notch of 1.5 m width. The co-efficient of discharge of triangular and rectangular notch are 0.6 and 0.62 receptively. If the depth of water over the triangular notch is 500 mm , find the depth of water over the rectangular notch.	[7M]	4	L4
UNIT-V					
9.	a)	Explain the following terms: i. Laminar boundary layer ii. Boundary layer thickness iii. Displacement thickness iv. Momentum thickness and v. Energy thickness	[7M]	5	L2
	b)	Explain the phenomenon of separation of boundary layer with a neat sketch	[7M]	5	L3
OR					
10.	a)	Obtain Von Karman momentum integral equation	[7M]	5	L3
	b)	Find the displacement thickness and the momentum thickness for velocity distribution in the boundary layer given by $\frac{u}{U}=\frac{y}{\delta}$	[7M]	5	L4

